Lead telluride

Lead telluride[1][2][3]
Names
Other names
Lead(II) telluride
Altaite
Identifiers
CAS Number
  • 1314-91-6 checkY
ChemSpider
  • 3591410
ECHA InfoCard 100.013.862 Edit this at Wikidata
EC Number
  • 215-247-1
PubChem CID
  • 4389803
UNII
  • V1OG6OA4BJ checkY
CompTox Dashboard (EPA)
  • DTXSID5061663 Edit this at Wikidata
Properties
Chemical formula
PbTe
Molar mass 334.80 g/mol
Appearance gray cubic crystals.
Density 8.164 g/cm3
Melting point 924 °C (1,695 °F; 1,197 K)
Solubility in water
insoluble
Band gap 0.25 eV (0 K)
0.32 eV (300 K)
Electron mobility 1600 cm2 V−1 s−1 (0 K)
6000 cm2 V−1 s−1 (300 K)
Structure
Crystal structure
Halite (cubic), cF8
Space group
Fm3m, No. 225
Lattice constant
a = 6.46 Angstroms
Coordination geometry
Octahedral (Pb2+)
Octahedral (Te2−)
Thermochemistry
Std molar
entropy (S298)
50.5 J·mol−1·K−1
Std enthalpy of
formation fH298)
-70.7 kJ·mol−1
Std enthalpy of
combustion cH298)
110.0 J·mol−1·K−1
Hazards
GHS labelling:
GHS07: Exclamation markGHS08: Health hazardGHS09: Environmental hazard
Danger
H302, H332, H351, H360, H373, H410
P201, P202, P260, P261, P264, P270, P271, P273, P281, P301+P312, P304+P312, P304+P340, P308+P313, P312, P314, P330, P391, P405, P501
Flash point Non-flammable
Safety data sheet (SDS) External MSDS
Related compounds
Other anions
Lead(II) oxide
Lead(II) sulfide
Lead selenide
Other cations
Carbon monotelluride
Silicon monotelluride
Germanium telluride
Tin telluride
Related compounds
Thallium telluride
Bismuth telluride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Infobox references
Chemical compound
PbTe unit cell

Lead telluride is a compound of lead and tellurium (PbTe). It crystallizes in the NaCl crystal structure with Pb atoms occupying the cation and Te forming the anionic lattice. It is a narrow gap semiconductor with a band gap of 0.32 eV.[4] It occurs naturally as the mineral altaite.

Properties

  • Dielectric constant ~1000.
  • Electron Effective mass ~ 0.01me
  • Hole mobility, μp = 600 cm2 V−1 s−1 (0 K); 4000 cm2 V−1 s−1 (300 K)

Applications

PbTe has proven to be a very important intermediate thermoelectric material. The performance of thermoelectric materials can be evaluated by the figure of merit, Z T = S 2 σ T / κ {\displaystyle ZT=S^{2}\sigma T/\kappa } , in which S {\displaystyle S} is the Seebeck coefficient, σ {\displaystyle \sigma } is the electrical conductivity and κ {\displaystyle \kappa } is the thermal conductivity. In order to improve the thermoelectric performance of materials, the power factor ( S 2 σ {\displaystyle S^{2}\sigma } ) needs to be maximized and the thermal conductivity needs to be minimized.[5]

The PbTe system can be optimized for power generation applications by improving the power factor via band engineering. It can be doped either n-type or p-type with appropriate dopants. Halogens are often used as n-type doping agents. PbCl2, PbBr2 and PbI2 are commonly used to produce donor centers. Other n-type doping agents such as Bi2Te3, TaTe2, MnTe2, will substitute for Pb and create uncharged vacant Pb-sites. These vacant sites are subsequently filled by atoms from the lead excess and the valence electrons of these vacant atoms will diffuse through crystal. Common p-type doping agents are Na2Te, K2Te and Ag2Te. They substitute for Te and create vacant uncharged Te sites. These sites are filled by Te atoms which are ionized to create additional positive holes.[6] With band gap engineering, the maximum zT of PbTe has been reported to be 0.8 - 1.0 at ~650K.

Collaborations at Northwestern University boosted the zT of PbTe by significantly reducing its thermal conductivity using ‘all-scale hierarchical architecturing'.[7] With this approach, point defects, nanoscale precipitates and mesoscale grain boundaries are introduced as effective scattering centers for phonons with different mean free paths, without affecting charge carrier transport. By applying this method, the record value for zT of PbTe that has been achieved in Na doped PbTe-SrTe system is approximately 2.2.[8]

In addition, PbTe is also often alloyed with tin to make lead tin telluride, which is used as an infrared detector material.

See also

References

  1. ^ Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, Florida: CRC Press, pp. 4–65, ISBN 978-0-8493-0594-8
  2. ^ CRC Handbook, pp. 5–24.
  3. ^ Lawson, William D (1951). "A method of growing single crystals of lead telluride and selenide". J. Appl. Phys. 22 (12): 1444–1447. doi:10.1063/1.1699890.
  4. ^ Kanatzidis, Mercouri G. (2009-10-07). "Nanostructured Thermoelectrics: The New Paradigm? †". Chemistry of Materials. 22 (3): 648–659. doi:10.1021/cm902195j.
  5. ^ He, Jiaqing; Kanatzidis, Mercouri G.; Dravid, Vinayak P. (2013-05-01). "High performance bulk thermoelectrics via a panoscopic approach". Materials Today. 16 (5): 166–176. doi:10.1016/j.mattod.2013.05.004.
  6. ^ Dughaish, Z. H. (2002-09-01). "Lead telluride as a thermoelectric material for thermoelectric power generation". Physica B: Condensed Matter. 322 (1–2): 205–223. Bibcode:2002PhyB..322..205D. doi:10.1016/S0921-4526(02)01187-0.
  7. ^ Biswas, Kanishka; He, Jiaqing; Zhang, Qichun; Wang, Guoyu; Uher, Ctirad; Dravid, Vinayak P.; Kanatzidis, Mercouri G. (2011-02-01). "Strained endotaxial nanostructures with high thermoelectric figure of merit". Nature Chemistry. 3 (2): 160–166. Bibcode:2011NatCh...3..160B. doi:10.1038/nchem.955. ISSN 1755-4330. PMID 21258390.
  8. ^ Biswas, Kanishka; He, Jiaqing; Blum, Ivan D.; Wu, Chun-I.; Hogan, Timothy P.; Seidman, David N.; Dravid, Vinayak P.; Kanatzidis, Mercouri G. (2012-09-20). "High-performance bulk thermoelectrics with all-scale hierarchical architectures". Nature. 489 (7416): 414–418. Bibcode:2012Natur.489..414B. doi:10.1038/nature11439. ISSN 0028-0836. PMID 22996556. S2CID 4394616.

External links

  • National Pollutant Inventory Lead and compounds fact sheet
  • Webelements
  • v
  • t
  • e
Pb(II)
  • Pb(BiO3)2
  • PbBr2
  • Pb(C5H5)2
  • Pb(C2H3O2)2
  • PbC2O4
  • PbC32H16N8
  • PbCl2
  • Pb(ClO4)2
  • PbCO3
  • PbCrO4
  • PbF2
  • PbHAsO4
  • PbI2
  • Pb(C
    11
    H
    23
    COO)
    2
  • Pb(NO3)2
  • Pb(N3)2
  • PbO
  • Pb(OH)2
  • PbPo
  • PbP7
  • Pb3(PO4)2
  • PbS
  • Pb(SCN)2
  • PbSe
  • PbSO4
  • PbSeO4
  • PbTe
  • PbTiO3
  • PbGeO3
  • C
    36
    H
    70
    PbO
    4
  • plumbite
  • PbC2 (hypothetical)
Pb(II,IV)
  • Pb3O4
Pb(IV)
  • Pb(C2H3O2)4
  • PbCl4
  • PbF4
  • PbH4
  • PbO2
  • PbS2
  • plumbate
  • Pb(OH)4 (hypothetical)
  • v
  • t
  • e
Salts and covalent derivatives of the telluride ion
H2Te
-TeH
He
Li2Te BeTe B CTe2
(CH3)2Te
(NH4)2Te O F Ne
Na2Te MgTe Al2Te Si P0.8Te0.2 S Cl Ar
K2Te CaTe Sc2Te3 Ti VTe2 CrTe
Cr2Te3
MnTe
MnTe2
FeTe CoTe NiTe Cu2Te
CuTe
CuTe2
ZnTe GaTe
Ga2Te3
-Ga
GeTe
-Ge
As2Te3
As4Te3
+As
Se +Br Kr
Rb2Te SrTe Y2Te3 ZrTe5 NbTe2 MoTe2 Tc Ru Rh Pd Ag2Te CdTe In2Te3 SnTe
SnTe2
Sb2Te3 Te2-
Te2-
n
I Xe
Cs2Te BaTe * LuTe
Lu2Te3
HfTe5 TaTe2 WTe2
WTe3
ReTe2 Os Ir Pt AuxTey HgTe Tl2Te PbTe Bi2Te3 Po At Rn
Fr RaTe ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaTe
La2Te3
CeTe
Ce2Te3
PrTe
Pr2Te3
NdTe
Nd2Te3
Pm SmTe
Sm2Te3
EuTe
Eu2Te3
GdTe
Gd2Te3
TbTe
Tb2Te3
DyTe
Dy2Te3
HoTe
Ho2Te3
ErTe
Er2Te3
TmTe
Tm2Te3
YbTe
Yb2Te3
** Ac ThTe2 Pa UTe2 Np Pu Am Cm Bk Cf Es Fm Md No