Deviation risk measure

In financial mathematics, a deviation risk measure is a function to quantify financial risk (and not necessarily downside risk) in a different method than a general risk measure. Deviation risk measures generalize the concept of standard deviation.

Mathematical definition

A function D : L 2 [ 0 , + ] {\displaystyle D:{\mathcal {L}}^{2}\to [0,+\infty ]} , where L 2 {\displaystyle {\mathcal {L}}^{2}} is the L2 space of random variables (random portfolio returns), is a deviation risk measure if

  1. Shift-invariant: D ( X + r ) = D ( X ) {\displaystyle D(X+r)=D(X)} for any r R {\displaystyle r\in \mathbb {R} }
  2. Normalization: D ( 0 ) = 0 {\displaystyle D(0)=0}
  3. Positively homogeneous: D ( λ X ) = λ D ( X ) {\displaystyle D(\lambda X)=\lambda D(X)} for any X L 2 {\displaystyle X\in {\mathcal {L}}^{2}} and λ > 0 {\displaystyle \lambda >0}
  4. Sublinearity: D ( X + Y ) D ( X ) + D ( Y ) {\displaystyle D(X+Y)\leq D(X)+D(Y)} for any X , Y L 2 {\displaystyle X,Y\in {\mathcal {L}}^{2}}
  5. Positivity: D ( X ) > 0 {\displaystyle D(X)>0} for all nonconstant X, and D ( X ) = 0 {\displaystyle D(X)=0} for any constant X.[1][2]

Relation to risk measure

There is a one-to-one relationship between a deviation risk measure D and an expectation-bounded risk measure R where for any X L 2 {\displaystyle X\in {\mathcal {L}}^{2}}

  • D ( X ) = R ( X E [ X ] ) {\displaystyle D(X)=R(X-\mathbb {E} [X])}
  • R ( X ) = D ( X ) E [ X ] {\displaystyle R(X)=D(X)-\mathbb {E} [X]} .

R is expectation bounded if R ( X ) > E [ X ] {\displaystyle R(X)>\mathbb {E} [-X]} for any nonconstant X and R ( X ) = E [ X ] {\displaystyle R(X)=\mathbb {E} [-X]} for any constant X.

If D ( X ) < E [ X ] e s s inf X {\displaystyle D(X)<\mathbb {E} [X]-\operatorname {ess\inf } X} for every X (where e s s inf {\displaystyle \operatorname {ess\inf } } is the essential infimum), then there is a relationship between D and a coherent risk measure.[1]

Examples

The most well-known examples of risk deviation measures are:[1]

  • Standard deviation σ ( X ) = E [ ( X E X ) 2 ] {\displaystyle \sigma (X)={\sqrt {E[(X-EX)^{2}]}}} ;
  • Average absolute deviation M A D ( X ) = E ( | X E X | ) {\displaystyle MAD(X)=E(|X-EX|)} ;
  • Lower and upper semideviations σ ( X ) = E [ ( X E X ) 2 ] {\displaystyle \sigma _{-}(X)={\sqrt {{E[(X-EX)_{-}}^{2}]}}} and σ + ( X ) = E [ ( X E X ) + 2 ] {\displaystyle \sigma _{+}(X)={\sqrt {{E[(X-EX)_{+}}^{2}]}}} , where [ X ] := max { 0 , X } {\displaystyle [X]_{-}:=\max\{0,-X\}} and [ X ] + := max { 0 , X } {\displaystyle [X]_{+}:=\max\{0,X\}} ;
  • Range-based deviations, for example, D ( X ) = E X inf X {\displaystyle D(X)=EX-\inf X} and D ( X ) = sup X inf X {\displaystyle D(X)=\sup X-\inf X} ;
  • Conditional value-at-risk (CVaR) deviation, defined for any α ( 0 , 1 ) {\displaystyle \alpha \in (0,1)} by C V a R α Δ ( X ) E S α ( X E X ) {\displaystyle {\rm {CVaR}}_{\alpha }^{\Delta }(X)\equiv ES_{\alpha }(X-EX)} , where E S α ( X ) {\displaystyle ES_{\alpha }(X)} is Expected shortfall.

See also

  • Unitized risk

References

  1. ^ a b c Rockafellar, Tyrrell; Uryasev, Stanislav; Zabarankin, Michael (2002). "Deviation Measures in Risk Analysis and Optimization". SSRN 365640. {{cite journal}}: Cite journal requires |journal= (help)
  2. ^ Cheng, Siwei; Liu, Yanhui; Wang, Shouyang (2004). "Progress in Risk Measurement". Advanced Modelling and Optimization. 6 (1).