Bell series

In mathematics, the Bell series is a formal power series used to study properties of arithmetical functions. Bell series were introduced and developed by Eric Temple Bell.

Given an arithmetic function f {\displaystyle f} and a prime p {\displaystyle p} , define the formal power series f p ( x ) {\displaystyle f_{p}(x)} , called the Bell series of f {\displaystyle f} modulo p {\displaystyle p} as:

f p ( x ) = n = 0 f ( p n ) x n . {\displaystyle f_{p}(x)=\sum _{n=0}^{\infty }f(p^{n})x^{n}.}

Two multiplicative functions can be shown to be identical if all of their Bell series are equal; this is sometimes called the uniqueness theorem: given multiplicative functions f {\displaystyle f} and g {\displaystyle g} , one has f = g {\displaystyle f=g} if and only if:

f p ( x ) = g p ( x ) {\displaystyle f_{p}(x)=g_{p}(x)} for all primes p {\displaystyle p} .

Two series may be multiplied (sometimes called the multiplication theorem): For any two arithmetic functions f {\displaystyle f} and g {\displaystyle g} , let h = f g {\displaystyle h=f*g} be their Dirichlet convolution. Then for every prime p {\displaystyle p} , one has:

h p ( x ) = f p ( x ) g p ( x ) . {\displaystyle h_{p}(x)=f_{p}(x)g_{p}(x).\,}

In particular, this makes it trivial to find the Bell series of a Dirichlet inverse.

If f {\displaystyle f} is completely multiplicative, then formally:

f p ( x ) = 1 1 f ( p ) x . {\displaystyle f_{p}(x)={\frac {1}{1-f(p)x}}.}

Examples

The following is a table of the Bell series of well-known arithmetic functions.

  • The Möbius function μ {\displaystyle \mu } has μ p ( x ) = 1 x . {\displaystyle \mu _{p}(x)=1-x.}
  • The Mobius function squared has μ p 2 ( x ) = 1 + x . {\displaystyle \mu _{p}^{2}(x)=1+x.}
  • Euler's totient φ {\displaystyle \varphi } has φ p ( x ) = 1 x 1 p x . {\displaystyle \varphi _{p}(x)={\frac {1-x}{1-px}}.}
  • The multiplicative identity of the Dirichlet convolution δ {\displaystyle \delta } has δ p ( x ) = 1. {\displaystyle \delta _{p}(x)=1.}
  • The Liouville function λ {\displaystyle \lambda } has λ p ( x ) = 1 1 + x . {\displaystyle \lambda _{p}(x)={\frac {1}{1+x}}.}
  • The power function Idk has ( Id k ) p ( x ) = 1 1 p k x . {\displaystyle ({\textrm {Id}}_{k})_{p}(x)={\frac {1}{1-p^{k}x}}.} Here, Idk is the completely multiplicative function Id k ( n ) = n k {\displaystyle \operatorname {Id} _{k}(n)=n^{k}} .
  • The divisor function σ k {\displaystyle \sigma _{k}} has ( σ k ) p ( x ) = 1 ( 1 p k x ) ( 1 x ) . {\displaystyle (\sigma _{k})_{p}(x)={\frac {1}{(1-p^{k}x)(1-x)}}.}
  • The constant function, with value 1, satisfies 1 p ( x ) = ( 1 x ) 1 {\displaystyle 1_{p}(x)=(1-x)^{-1}} , i.e., is the geometric series.
  • If f ( n ) = 2 ω ( n ) = d | n μ 2 ( d ) {\displaystyle f(n)=2^{\omega (n)}=\sum _{d|n}\mu ^{2}(d)} is the power of the prime omega function, then f p ( x ) = 1 + x 1 x . {\displaystyle f_{p}(x)={\frac {1+x}{1-x}}.}
  • Suppose that f is multiplicative and g is any arithmetic function satisfying f ( p n + 1 ) = f ( p ) f ( p n ) g ( p ) f ( p n 1 ) {\displaystyle f(p^{n+1})=f(p)f(p^{n})-g(p)f(p^{n-1})} for all primes p and n 1 {\displaystyle n\geq 1} . Then f p ( x ) = ( 1 f ( p ) x + g ( p ) x 2 ) 1 . {\displaystyle f_{p}(x)=\left(1-f(p)x+g(p)x^{2}\right)^{-1}.}
  • If μ k ( n ) = d k | n μ k 1 ( n d k ) μ k 1 ( n d ) {\displaystyle \mu _{k}(n)=\sum _{d^{k}|n}\mu _{k-1}\left({\frac {n}{d^{k}}}\right)\mu _{k-1}\left({\frac {n}{d}}\right)} denotes the Möbius function of order k, then ( μ k ) p ( x ) = 1 2 x k + x k + 1 1 x . {\displaystyle (\mu _{k})_{p}(x)={\frac {1-2x^{k}+x^{k+1}}{1-x}}.}

See also

References

  • Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001